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An Invariant Measure Approach to the
Convergence of Stochastic Approximations with State Dependent Noise
by

Harold J. Kushner and Adam Shwartz

Abstract

f\\

A new method is presented for quickly getting the-eﬂﬁvé%;ainary differen-
A

tial equatioéf associated with the asymptotic properties of %te stochastic

approximation_ X = GG (or the projected algorithm for the
constrained problem). Either a > 0, or a, can be constant, in which case
the analysis is on the sequence obtained when a + 0.) The method basically requires

4he <to

that LX—TE—-I} be Markov with a-ﬁFe11e1“9Ziansition function, but little else.
n’ °n- : :
N (A B, »MT‘),
The simplest result requires that if ﬁn\f x, the corresponding noise process

~i£ﬁLx},_n_§;E;> have a unique invariant measure; but the 'non-unique' case can
also be treated. No mixing condition is required, nor the construction of averaged
test functions, and f£(-,-) need not be continuous. detailed analysis of the
way that {En} varies with {Xn} is not required.™ For the class of sequences
treated, the conditions seem easier to verify than for other methods. There are
uxtensions to the non-Markov case. Two examples illustrate the power and ease of
use of the approach. Aside from the advantages of the method in treating standard
problems, it seems to be particularly useful for handling the type of iterative
algorithms which arise in adaptive commmication theory, where the dynamics are

often discontinuous and the 'noise' is often state dependent due to the effects

of feedback. __
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I. 1Introducticn

We consider stochastic approximations of the form

(1.1) Xn+1 = Xn + a f(Xn,En),

where f(.,.) might be discontinuous, and the evolution of {Cn} depends on

{X '} 1in the sense that, in general,

P{g ,, €Ale,, 1<n}dP(E € Alx g, 1 ;n},

We also treat the following ''projected" versiom of (1.1). Let G be a bounded
set of the form G = {x : qi(x) <0, 1=1, ... ,s}, where qi(n) are.continu-
ously ..fferentiable, and G is the closure of its interior. Let wG(y) denote

any closest point in G to y. Then the projected algorithm is

(1.2) X = NG(Xn ta f(Xn.En))-

Several so-called ordinary differential equations (ODE) methods for proving
convergence of {Xn} have been developed in recent years. ([1) to [4], and [5],
a more polished form of [4], with weaker conditions). The aim of these methods

is to get an ODE, which we write symbolically (for (1.1)) as

(1.3 X = E¥f(x,8) = ff(X.C)Px(dE)

where(loosely speaking) P¥*(+) is the stationary distribution of the sequence

{Cn*, when X = x. The idea is that {Xn} in (1.1) varies much more slowly

(for large n) than {En} does and that some sort of averaging method or law
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of large numbers can be used to show that the asymptotic properties of {Xn}

are the same as those of (1.3), with a proper definition of Px(-).

The methods in [1] to [3] are very useful, but are often difficult to
apply when the noise is state dependent, in the sense that the conditions are
often either hard to verify or do not hold in many important cases of interest.
Reference [4], [5] presented an '"averaging method' which works quite well for
such problems, although one would like to avoid the work associated with con-
structing the "averaged test functions', and verifying the conditions on them.
The results in [4], [5] were for w. p. 1. convergence and also proved stability
and similar properties for {Xn} sequences which were not artificially bounded.

But generally, past methods required what is often a difficult analysis of

the way {En} depends on (X }.
In this paper, the essential assumption for the validity of (1.3) is that
{En} depends on {Xn} in such a way that if X = x, a constant, then the
corresponding '{En} process possesses a unique stationary measure. Such an
assumption, either implicitly or explicitly, was used in much past work on
the 'state-dependent'’ noise case. If the stationary measures are not unique,
then a very similar result (2.9) holds. The conditions required here are
generally weaker and much easier to check and are useful even when the noise
does not depend on the state. As amply shown by the examples, the method is
easy to use. The techniques used are new for the class of problems treated.
We concentrate on the case a -+ 0. The same proofs work (even more
easily) when a_ = a, a constant. Then, we get that the limit (as a + 0)

n
of xé(-) satisfies (1.3) or (2.12) (in the constgained case), where x?(-)

© o ——— e e e+ — e =
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is the piecewise lincar function with values Xn at na. The approach is
advantageous for treating many standard problems because the conditions are
relatively easy to verify. They are particularly useful for treating the type
of algorithms which appear in adaptive communication theory, where the dynamics
are often discontinuous and the noise is often state dependent owing to the role
of feedback. In such cases, one normally has an z a.

In Section 2, we discuss the case where {xn’gn-l’ n > 1} is a Markov
process, or where the 'state-noise' pair can be 'Markovianized'. This is the
case which is most fully understood and easiest to use. A class of non-Markov
processes is dealt with in Section 3, and in Section 4 we illustrate the power

and ease of use of the method via two examples.

2. Limit Theorems with {xn, gn-l} Markov.

In this section, we are concerned with the Markov case. In very many
applications the system is either Markovian or the actual physical noise can
be Markovianized, perhaps leading to an abstract valued process. Below, it
is assumed that {Xn} is either tight or lies in a compact set. This is not

a very serious restriction, since practical algorithms tend to use various

truncation devices. In any case, the use of the projection method (1.2)
guarantees the compactness when xn lies in a Euclidean space.

In Theorems 1 and 2, we allow xn to take values in a compact metric
space, and €n in a complete separable metric space. The reason for this is
that it fits certain 'abstract' applications where the metric is defined by a

weak topology, and which will be published separately. Also, it facilitates
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the treatment of non-Markovian problems by 'Markovianizing' in an abstract space.

Seme assumptions. Assumptirns [A2.4,6) and the first part of (A2.1) will %“e

weakened later, as will the explicit form given for f£(-,-).

A2.1. {Xn,E n > 0} is a Markov process with a (possibly non-

n-1°

homogeneous) transition function P(x,£,n,%2,A) = P{(X

= £},

) € A|xn = x,£

n+2’€n+£-1 n-1

The X  takes values in a compact subset H of a metric and linear topological

space, and En takes values in S, a complete separable metric spacc. Both metrics

are assumed to be invariant.

A2.2. {in} is tight in 8. .

A2.3 For each Borel B < S, define the one step 'transition function'

P (6,1,B) = P{g € Blgn_1 = €, X =x}, and suppose that it does not depend on

n. Let Px(é,l,') be weaklyT continuous in (x,£).

For each x, we now define a Markov process {€n(x), n > 0} via the |
transition function Px(E,l,-), where PX(E,Q,B) = j PX(E,Q—k,dE')Px(E',k,B)
is defined recursively.

A2.4. For each x € H, let {En(x), n > 0} have a unique invariant

Tt
measure PX(.), and let {P*(-), x € H} be tight .

A2.5. % lag,°8,) <=, 0<a 0, % a =
A2.6, f(+) is bounded - :

A2.7. There is an integer ¢ > 0 such that IPx(g,c+1,dg')f(x,£') is

continuous in (x,£). It equals I}m JP(x,E,j-c,c,dx' dg')Px,(g',l,ds")f(x',g") =

lim E[f(xj,gj)lxj_c=x,§j_c 1=g], where the limit is uniform on compact (x,£) sets.
j - Ser>

* l.e., Px(E,l,dE')g(E) is continuous in (x,£) if g(-) is bounded and

continuous.

t Normally, the tightness holds when (A2.2) holds, so the condition is not

restrictive.
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Remark on (A2.7). 1If f(-,-) is continuous, then (A2.3) implies that we can

take ¢ = 0. If ¢ = 0, then the second sentence of (A2.7) is redundant. Even
if f£(-,.) 1is not contimurus ¢ = 0 is often enough to get the reauircd smosth-
irg. See, for example, the applications in Section 4. Even if ¢ > 0 is needed,
the second sentence of (AZ.7) does not seem to be particularly restrictive, since
IX,

]
tially Px(E,c+1,-) for large j. The assumption is stated as it is for technical

-Xj_c] +0 as j +« implies that the measure in the lim expression is essen-

reasons. In all applications that we are aware of now, if the first sentence of

(A2.7) holds, so does the second sentence.

Before introducing the next assumption, some additional notation is
n-1
required. Set t = ] a,, and m(t) = max {n:t <t}, for t>0. Thus
0

m(t ) =n. Let 0<§ +0 as n -+« such that 1im sup {a.: j > n}/6_ = 0.
n n n ] - h
For each n choose a sequence {m(%,n), 2=1,...} where m{(n,1) = n,
m(n,+1)-1
m(n,2+1}) > m(n,2), and such that i aj = Sn, modulo an 'end' value of
m(n, %)
aj. Thus (tm(n,2+1)'tm(n,2))/6n +1 as n-+ o, uniformly in &. For

notational convenience we henceforth suppress the n in m(%,n) and write

simply m(n,2) = m,. Let IK(E) denote the indicator of the set where £ € K.

For each w, £, n define the measure on the Borel sets of S:

] M1t
Qw,%,n,) = 5 ) a P{Ej_l € -[Xm & b
n m, A 4

Define Q (w,%,n,*) = Q(uw,%,n,*)I (& ). Thus, if ¢ (w) € K, the measure is
K X mg-l ml-l

the zero measure. If S is not compact, then another assumption is needed.

First, we state it (A2.8b) and then discuss it. Either (A2.8a) or (A2.8b) will

be used. (A2.8b) always holds for N(K) =1 if S 1is compact.

A2.8a. Either S 1is compact or {En} is mutually independent.

A2.8b. For each compact K, there is an integer N(K) < = such

that for each T the set

e
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1 ]
PO ()58 (o m By T ) € K)s o all compact X, all ndi.e.
L L £
oo that jommg 2o, jomg 2 N(K), oty -t < T)

Despite its seemingly complicated structure, (A2.8b) is quite natural
and is often easy to verify. See, for example, the application in Section 4D,

and the example below. It is motivated by the following consideration. If S

is not compact, it is possible that
(%) Ple; | € X wLg @Y, G 2w, wl

'3 '3
is not tight. Suppose for example that {En} is a stationary scalar valued
Gauss Markov process, not depending on {Xn}, and whose correlation function
p(*) tends to zero. Then the set (*) is not tight, since arbitrarily large
initial conditions Eml_l(w) are allowed. But, if the Eml_l(w) were all
confined to a bounded set, then (*) would be tight. As K increases, and
gm _l(w) € K, it might take longer forthe’fhture'éj(j>m2) to 'settle down'. This
islwhy we allow N(K) steps for this 'settling down', where N(K) increaseswith K. In this
example, if K = {E:IEI < k}, then any N(K) satisfying p(N(K))-k < constant
is satisfactory.

We now take some notation from [2]. Let xo(-) denote the piecewise
linear interpolation of the function with value Xn at tn. Define the shifted
function xn(-) by xn(t) = xo(t+tn), t > 0. Thus xn(O) = xn, and the
asymptotic properties (as t + ») of any limit (as n + ») of {xn(-)} yields
the asymptotic behavior of {Xn}. The convergence of xn(-) to a limit x(¥)
is in the sense of weak convergence of a sequence of probability measures. We
give the differential equations which x(-) satisfies. Using this differential

equation and the propertics of weak convergence, one can analyze the asymptotic




behavior of Xn as in [2]. See that reference for details. Here, we con-

centrate or proving representations for the differential equations.

Theorem 1. Under (A2.1) to (A2.8), {x"(-)} is tight and any weak limit

x(+) satisfies
(2.1) x = E'f(x,£) = j £(x,£)P*(dE) w.p.1,

where x(0) € H. The right hand side of (2.1) is continuous in x.

Proof. For notational simplicity, we do the proof only for the case where H
is a subset of a Euclidean space E'. - The details in the general case are
quite similar. What is actually proved in the general case is that for each
bounded real valued g(-) whose first two Frechet derivatives are continuous,
gx(t)) - g(x(0)) = ]tgx(x(u))OEx(u)f(x(u),ﬁ)du w.p.l.

The continuitg is a consequence of the tightness and uniqueness (A2.4).

Now, by the tightness of {En}, we can choose Gn + 0 and non-decreas-
ing compact Ka such that

P{gv € Ka} + 1 for any sequence {va}, and
a

mQ+N(Kn)
EL- Z a., + 0, uniformly in 2 (where my >n), as n + =,
n m 1
L
and
= 7 |
—_— a, .-a.|+0 as n-» o=,
Sn j>n j+l 7]
Define the piecewise constant function fn(w,t) by
- 1 mlil'l
f (w,t) = — a.E f(X.,£)I (& ) on [t_ -t ,t -t ),
n’ Gn n VELTRERS R Kn ml-l me n'my N
t 2
and set F_(w,t) = J f (w,s)ds. (To see why time is 'centered' about tn’
n o " -
when working with the shifted function x"(-), recall that tm-tn = .z aj are
J=n




n

et ) = X..) By (A2.6), )

the break points of xn(-) and that xn(O) n

{x"(-), F (-}, n > 0} is tight in cT[0,=). Henceforth, we work with a weakly
convergent subsequence (called subsequence 1), also indexed by n, and with

limit (x(:),F(+)), or with a subsequence of it. We use Skorokhod imbedding

([7], Theorem 3.1.1) wherever convenient, and with no notational change. Thus,
we can assume where convenient, that w.p.l. (x“(-),Fn(-)) converges to

(x(*),F(-)) wuniformly on bounded time intervals. Suppose that

- t
(2.2) F(t) = f E* W (x(u),£)du
0
and that for arbitrary k, t, s and Sy < Speer < 8y <t<t+s and bounded
and continuous h(-),
(2.3) BR(x(5;),F(s;),3 < K [x(£+8)-x(t)-F(t+s)-F(1))] = 0.

Then M(t) = x(t) - x(0) - F(t) is a continuous martingale with M(0) = O.
Since the quadratic variation of M(-) is zero (as can readily be shown),
M(t) = 0 w.p.l, and (2.1) holds. So, we only need to prove (2.2) and (2.3).

For smooth h(.), *
m(tn+t+s)-1

n - . n n _ =
(2.4) Eh(x"(s;),F (55,3 < k) [x7(t+s)-x"(t) m(ti\\t] a.f(xjf,j)] e
= . n n S~ - .
(2.5) Eh(xn(sj),Fn(sj),J f-k)[x (t+s)-x (t) -J: fn(s)ds] = en,

where En and ea gOo to zero as n +® .
We now prove

(2.6) £ (s) » E*V£(x(s),© in probability for each s.




——e

i

The limit (2.6) implies that En(-) converges in measure to the right side of (2.2).
This and the weak convergence and (2.5) yield (2.3) with ;(-) defined by (2.2).

So, only (2.6) needs to be proved.

+
Fix s and {mz} such that s € [t_ -t _,t
_ = —_— m,

the null set on which (xn(-),;n(-)) does not converge uniformly to (X(°),E(-))

n’ m£+l'tn)' Let N, denote

on bounded intervals (under the Skorokhod imbedding). It is enough to show that
(for each s) each subsequence of subsequence 1 contains a further subsequence
for which the limit in (2.6) holds in probability. Select a subsequence of
subsequence 1, indexed also by n but called subsequence 2, such that++
P{é;mz_1 € Kn’ all large n} = 1. Let N(s) denote the exceptional null set.
Fix w € N0 U N(s), and extract a weakly convergent subsequence (a subsequence
of subsequence 2) of the set of measures (tight by (A2.8) and the properties
of §) Q= {QKn(w,l,n,'): n ‘€ subsequence 2, s fixed as above}, with

limit 5;('). The limits in (2.7) below are on this subsequence. Let g(:) be

bounded and continuous and set G(x,§) = IPX(E,I,dE')g(E'). Then by (A2.3,5,8)

m -1
!,i-l EJ_J»
lim P(X ,& Mo sj-my ,dEYg(E)T, (& )
n mg Gn mz mz-l £ i K“ ml-l
mzil-l fi
- lim Jp(x 6 m,i-m4,dE,dx )P, (E'1,dE)g(E)T, (£ )
n m, Gn my mfl L 2 x' Kn m, 1

(2.7)

lim IQ (w,%,n,dE")G(X_,E")
n Kn M

Iﬁ;(de')ctx(s),a') - fﬁ;(de')Px(e',l,da)g(e).

1 I.e., for each n, choose m, = m(2,n) such that s is in the indicated interval.

Keep in mind that £ depend& on n, and that we suppress the n-dependence of
m(2,n) in the notation.

bl By the tightness of {Ej}, we can always choose such a subsequence.
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Similarly, the limit in the first line is jﬁ;(da)g(s). In going from the
second to the third line of (2.7), we used the facts that G(-,g') is con-

tinuous, uniformly on compact £', that sup |X.-Xln | +0 as n+ =,

Mee1 2 127 .

that sz + x{s) and the tightness of the set Q.

Due to the arbitrariness of g(-), and the uniqueness (A2.4) and to
the equality of the last line of (2.7) with I-P-m(dﬁ)g(E). we have 3w(-) =
Px(s)(-). Again, by the uniqueness, the 1limit does not depend on the chosen
subsequence of Q. Thus, if o ¢ N0 U N(s), QK (w,2,n,°) > px(s)(.) weakly
as n + o, where n now indexes the second chgsen 'subsequence 2' of the

theorem.

Using (A2.7) we now have (limits are on the 'subsequence 2')

u‘9,-0-1-]' a. .
tim 31- I P(xm s §m RE mh’ J-mh’ dE'.dx)Px(E',l,dE)f(x,E)IK (Em -1)
m2 n ') '3 n L
mz+1'la.
= lim z T’Sl JP(Xm ,Em _l,mz,j-ml-c,dg',dx')P(x"gu’j-c,c,dE,dx)Px(E,l,dEIv)f(x,gn)IK (Em _1)
n mz n L L n 2
m“{l »] dVEx, BT, (6 )
= 11m [ p(x ’g » sj' -C, dE'dX)P (E',C"l, X,g E -
n n& Gn m mn—l b} ™ X Kn mz 1
(2.8) 1

]
[
[
8
P
+
[ o
Oy W
Sy,

POy 6 1oy i Beadi DIy Gy )Py @ er1,dOEX, 0]

lim J Q (w,2,n,&")P
n

)(5 ',c+l,dE)f(x(s),E)
n

x(s

[ 7 e, ) @i eae 0

[ P (S (&) £(x(s), ).
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In going from the 3rd to the 4th and then to the 5th line we used the continuity
in (x,£) of IPX(E',C+1,d£)f(x',E) and the facts concerning convergence cited
below (2.7). In going from the next to last step to the last step, we used the
fact that 5;(-) = px(S)(-) is an invariant measure for the transition function
Px(s)(g,j,-) for each x(s). The equality of the first and last lines of (2.8)
for w £ NO U N(s) yields the desired result (2.6) for 'subsequence 2'. But,
since each subsequence of subsequence 1 contains a further subsequence satisfy-
ing the requirements of subsequence 2 (but with perhaps a different N(s)) (2.6)
holds for subsequence 1 also. Furthermore, the limits for all possible sub-

sequence 1's differ only in the initial condition x(0). Q.E.D.

Extension. In many problems of interest (see Section 4), the algorithm

(1.1) takes the form Xn+1 = Xn + anfn(w), where

E(£, (w)[X,,6;_,»i <n] = F (X ,E. 1),

and Fn(x,E) + F(x,£), a continuous function, uniformly in (x,£) on

compact sets. Then Theorem 1 still holds. This extension is useful when

fn(') depends on variables other than (Xn,an); for example, it might depend
. . . X - . v

on a 'choice' or 'logical' variable Z,o where P(zn 1|xi,zi_l,1 <n

q(xn.zn_l), for some continuous function q{-).

Non unique Px(-). A very similar result to Theorem 1 can be obtained
when the uniqueness in (A2.4) is dropped. Let P* = {P:(-), a € some set
A(x)} denote the set of invariant measures for the transition function

P (£,5,"). Assume that P=(P* x € any compact set} is tight. For each x,

R by 2 " P R e T T N L LI L AL EREPPN USRI

R Lo
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9* is convex and weakly compact. Define the set
C) = {yy = fpjcde)f(x,s), o € A(0}.

Then C(x) is closed and convex. The sets £7x and C(x) are upper semi-
continuous in x 1in the Hausdorff topology (with the metrized weak topology
on the space of distributions and the metric topology on H). This is a

consequence of the fact that under the tightness of P if X, > x

X X X
and P () €2P", then {P M(-)} is tight, and all weak limits are in @ by (A2.3).

Theorem 2. Assume (A2.1)-(A2.8), with (A2.4) altered as above, then

{xn(-)} is tight and any weak limit x(.) satisfies

(2.9) x € C(x) for almost all u,t.

Remarks on the proof. The proof is essentially the same as that of Theorem 1,

and we only remark on a couple of points. By the argument of Theorem 1, if
w € No U N(s) is fixed and n indexes a weakly convergent subsequence of
the set of measures Q defined above (2.7), then we must have

m -1

2+¢1 © a,
2.10 1i -4 j-
S [pox,,. g1y Iy EDEGLED (5 )

- tim £(9)= [£0x(5), 0075 45) € cxc)),

for some o € A(x(s)), perhaps depending on w and s and on the selected sub-
sequence. Under the weak convergence for the selected subsequence and the
Skorokhod imbedding, En(-) > E(-) (which is absolutely continuous) uniformly
on bounded time intervals w.p.1, but En(s) does not necessarily converge in

~ 2
probability to f£(s) = F(s) as it did in Theorem 1. But, for each fixed

A
At
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w§ NO and each T < =, fn(‘) (considered as a function on [0,T]) converges
(along any 'subsequence 1') to f(-) weakly when these functions are considered
as elements of Ll[O,T]. Thus for each w € Ny there are '{Bni, i < n} such

n n - -
that 0 < Bni’ 1218ni =1, Bni +0 as n -+« for each i, and izl Bnifi(') + f(.)

in the norm of Ll[O,T]. This convergence, together with the limit (2.10), the
convexity and closure of C(x) and the upper semi-continuity cited above

Theorem 2 imply that ;(s) € C(x(s}) for almost all (w,s).

The projection algorithm (1.2).

Recall the definition of . from Section1. Let 7(h(+)) denote
the (not necessarily unique) projection of the vector field h(-) onto G;

i.e.,

(2.11) m(h(x)) = set of limits 1lim [ng(x+ah(x)}-x]/4.
A+0

Theorem 3. Assume (1.2) and the conditions above it instead of (1.1),

and assume (A2.1) to (A2.8), except that Xn takes values in a Euclidean

space. Then {xn(-)} is tight and if x(-) is the limit of a weakly convergent

subsequence, x(:) satisfies the ‘projected’ equation

(2.12) x = T(E*f(x,£)) for almost all u,t.

Recall the extension of Theorem 1 to the algorithm Xn+1 = Xn + anfn(w), cited

after Theorem 1. If wG(Xn+anfn(w)) is used, then Theorem 3 holds with

x = T(EXF(x,£)).

Wi - 2 ol

hdie
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Remarks on the proof. The proof is quite similar to that of Theorem 1, and only

a few remarks will be made. Use the partition of [2, eqn.(5.3.4}] to write (1.2)
in the form

(2.13) . Xpeg = X, + 8, £(X 6 + 3 d,

where andn = uG(xn+anf(Xn,gn)) - (Xn¢anf(xn,£n)). In [2], andn is termed

T, Using the notation of Theorem 1, define the piecewise constant function

&n(w,t) by

- 1 m£§1'1
d (w,t) = — a.d, on [t -t ,t -t ),
n Gn mz 173 mz n m£+1 n

- t . - -
and set D _(w,t) = I d (w,s)ds. Then, as in Theorem 1, {xn(-),F (),D ()}
n o N n n

is tight. Extract a convergent subsequence with limit (x(-),ﬁ(-),ﬁ(o)). Both
E(o) and 5(-) are absolutely continuous and F(-) satisfies (2.2). Write

—~»;(') = I3(‘) and define &(-) by

- t .

D(t) = f d(s)ds.
0

Write

£(t) = T(£(t)) + £(t), £(t) = £(8) - n(£(V)),
the %(-) term being a 'projection error'. By the method of Theorem 1,

(2.14) x(t) - x(0) - F(t) - D(t) = 0 w.p.l.

Ef(x,6) +d = £ +d,

X

x(t) = TEMD) + £ + d(V), w.p.l.

— ——— -
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Using the ideas of [2, Section 5.3], it can be shown that -Jt %(s)ds = B(t).
This and (2.14) imply (2.12). We omit the rest of the detailg. We note only
that the proof of the last equality uses the facts that if Xn+1 € 3G, then d
is in the cone -K(X ), and that if x(t) € 3G, then £(t) in the cone

K(x(t)), where

K(x) = {y: y= ] A4

(x), for some set of X, > 0}.
i1q, (x)=0 .
i

i,x
Unbounded f£(-).

We will use

(A2.9) There are a K < » and apositive valued function d(-} such that

|f(x,£)| 5_K{1+d(£)), and x takes values in the Euclidean space rRT. For some

+
l+a < .

a >0, sup E|ld(£.)]
i J

Theorem 4. Under (A2.9), and the tightness of {Xn}, both {xn(-)}

and {F (-)} are tight in CT[0,%).

o

% .
Y Proof. Both x"(-) and F (1) are sums of terms of the types ‘5f(xi»€j) and
L] .
‘ ajEmlf(xj’Ej)’ for j 2m,, respectively. These are bounded by ajK1(1+d(§j))
g and ajl(l(lﬂil| d(Ej)), respectively. But by (A2.9), both {d(ej)} and
» : £
i {E. d(Ej); £,§: 3 z_ml} are uniformly integrable, which implies the theorem.
)
Q.E.D.

e A

Y- AT
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Given the tightness, the only, further impediment to the result of
Theorem 1 for the unbounded f(-,-) case, concerns the meaning of the integrals
in (2.8). A truncation and limit argument seems the most natural. We simply
take the following natural approach.

Suppose that there is a sequence {fL(x,E), L=12,...,} each member
of which satisfies (A2.6,7), where ¢ doesn't depend on L, and such that
Efo(x,E) »> Exf(x,g) uniformly on any compact set, as L -+ ». Let (see (A2.9))

if(x,e)lf_ K(1+d(§)), and let fL(x,E) = f(x,£) when d(§) < L. For each
m(tﬁT)
T<wo, let E § ajd(gj) I {d(gj) >L}+0 as L=+, uniformly in n < m(t +T).
j=n )
Then under (A2.1,2,3,4,5,8), the conclusion of Theorems 1 and 3 hold. The

condition of the next to last sentence is guaranteed by (A2.9) and also implies

the tightness.

3. The Non-Markov Case.

The ideas of the last section can be extended to some interesting non-
Markov systems where, loosely speaking, if xn z x (a constant) for all
-» < n <=, then {En} is stationary and has certain mixing properties. We
next state some assumptions, which are modifications of some in Section 2.
Then a general convergence theorem is proved. Lastly, it will be shown that

the assumptions hold in many .ases of interest.

In particular, in Theorem 8 we verify (A3.2,3) when {in} is not state .

dependent and satisfies a type of ¢-mixing condition. This case is of interest,
since the non-Markov noise and discontinuous dynamics case is usually hard and
occurs frequently. In this 'non-state dependent' case, the measure Px(g.l.-) =P(¢,1,)

below would not depend on x, and would equal the stationary conditional dis-
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tribution P{g, € .|g = £} provided that this

0

stationary measure is weakly continuous in £,

-

A3.1. Xn € H, a compact metric space, and f(-) is bounded.

The limits in (A3.2) and (A3.3) are in the sense of probability.

A3.2. For each x, there is a transition function Px(e,l,-) which

is weakly continuous in (x,Z) and such that for each bounded and continuous

g(+), with G(x,§) = fo(E,l,dE')g(E').

lim [[P(ds |x 851K plyrr S MBS - G(X;5,85_1)1 =0

1=
n+o

A3.3. Define F(x,£) = [f(x,&')PX(C,l,dE'). Then F(-,+) 1is continuous

lim [fp(dr, |x &5 X8y peu S MEXLE) - F(X,E5 )] =
jonre j-1 -1 I | i’7i-1
)\ mard

A3.4. For the Markov process with transition function P (g j,*) (which is

obtained recursively from Px(z,l,-) as above (A2.4)), there is a unique in-

variant measure Px(-). The set S 1is compact. (Hence, {Px(~), x € H} is tight.)

We define the measure Q(w,%,n,°) similarly to that in Section 2: i.e., by

m£+1-1
=L
fo(w.z.n.dc)g(s) ) ajfvcd:jlxu.su_l,u < Mg(Ey),
n j=m,

where g(°) is an arbitrary bounded measurable function. (Here, we use gj in

the sum Q(:); in Theorem 1, 5j~l was used. The choice is unimportant and is

_ due to notational convenience.)

et et b 3 i A
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Theorem 5. Assume (A3.1 to 4) and (A2.5,6). Then {x"(-)} is tight

and the limit x(-) of any weakly convergent subsequence satisfies (2.1).

l{ (1.2) is used in lieu of (1.1) and the conditions above (1.2) hold, with

xn in some Euclidean space, then xn(-) is tight and the limit of any weakly

convergent subsequence satisfies (2.12).

Proof. The proof is close to that of Theorem 1 and we use the same
terminology, but with the measure Q(w,&,n,-) defined as above and Gn satisfying
the conditions above (A2.8), and in the proof of Theofem 1. Since S iscampact the
truncation factor Il( used in Theorem 1 is not required. In the proof, we take Xn € Rr,
Euclidean r-space. The details in general are very similar to the details in
this special case. Clearly {xn(-),in(-)} is tight in Czr[o,m). Extract a
weakly convergent subsequence (also indexed by n and called subsequence 1)
with limit x(-),ﬁ(-). We work with this sequence or subsequences of it,
henceforth. By the Skorokhod imbedding, there is a null set N0 such that the

limit can be taken to be uniform on bounded intervals, for w §£ NO’
Let g(+) be bounded and continuous.

By (A3.2), in getting the limit in probability (as n + =) of an expression of

the form
mz+1-l 21
! 3 JP(dEj b AKX 08, w2 mp)g(Ey)
m n
L
ml#l'l fi
L
we can substitute G(Xj,ﬁj_l) for JP(delxj,Ej_l,Xu,gu_l,u S_ml)g(gj),
when LI >j2m,. Fix s. For each n, fix m, = m(L,n) such that s€ [tmg-tn’tml+l-tnL
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Under the Skorokhod imbedding E[G(Xj,ij_l) - G(x(s),gj_l)l + 0. Thus, by the

last three sentences

EIJQ(w,lxn,dEJIg(E) - G(x(s),8)1] ¥ o.

Choose a subsequence {called subsequence 2) for which

JQ(“’)R"n’dg) [8(5) - G(X(S) ,E)] -0 W.p.l

for a countable dense set of bounded and continuous g(-), hence for all
bounded and continuous g(°). Denote the exceptional w-set by ﬁ(s). For
fixed w ¢ N0 u ﬁ(s), choose a further subsequence (termed subsequence 3)
for which Q(w,%,n,-) converges weakly to some measure 5@(-).

Then

]Fw(ds)g(e) = Jf"w(ds)c(x(s),a) = Jﬁw(da)Px(s) (£,1,d8")g(g").

Thus, by uniqueness 3;(-)=Px(s)(-), a result which does not depend on the
particular chosen subsequence 3. Hence Q(w,%,n,-} -+ Px(s)(-) weakly along
subsequen;e 2, for almost all w.

Using this last result and (A3.3), and a factorization similar to the

one used in (2.8), we get that

m, .-l
2+1 31
(3.2) ,% 5 JP(daj X5 1%, 8y o0 < m)F(XS,E)
L

N [P"‘s’ (dE) £ (x(5) ,E)

in probability as n + « along subsequence 2. Hence (3.2) holds in probability as

n » » along subsequence 1.

— AR A e e e e e R i
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We omit the details for the projection algorithm. These use an adaptation
of the above method which is analogous to the modification of the proof of

Theorem 1 which is used in Theorem 3. Q.E.D.

Remark. Let Xn+1 = xn + anfn(m) replace (1.1), and suppose that there is a

continuous F(-) such that

P
E[fj(w)lxj,sj_l, Xpsbyopot S0 - F(Xy,85 1) > 0

as j -n-+>o and n > o, Then the Theorem continues to hold.

We now examine (A3.2,3), under the following ¢-mixing condition, where

the noise does not depend on the state.

A3.5. Let S be compact. Let ~5§’-572 and _97: denote the o-algebras )

which measure €j_1,{£j_1,3 < m} and {gj_l,j > m}, resp. For any A Ej?g, B €_§§1m,

|P(AB) - P(A)P(B)| < ¢ P(A) and < ¢ P(B), uniformly in m, where 0 < ¢, * 0. .

The following result is well known.

Lemma 6. Let A o €~?:+m’ AmE 5"(;', and assume (A3.5). Then as n + o
m p !
\P{Amm]yo} - P{Amm}l >0 -

o P
IP(A_| .} - PIA ] >0

E[P{A |2 .o} - P{Am}lIAmm < ¢ P{A } and < ¢ PA} |

E|P{A_, | Fo) - P(A_, }|

nem IAm <o P{A .} and < ¢ P{A} .
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Let lgjl <1 with g being &; measurable. Then as n + =

m P
E[gn+m[‘g‘0] - Egup > 0

Blg,| F0,0] - Eg, + 0,

n+m

where the convergences are uniform in {gj}, {Am’Am+n}’ and m,

Theorem 7. Assume (A3.5). Let gj be 73
let . n - . ©
et j > n. Then E[gjfjro U 95_1] E[gjl 9’j_1] +0 as j -n->o,

measurable with |gj| <1, and

uniformly ir j, and {gj}.

n i .
Proof. Let GJ._1€9J._1 and G n€?0. The an below are uniformly

E

0,

ed and E|vi |
bounded an E]vn,JIIGi-1 < 2¢j_nP{Gj_1}, by Lemma 6. We have

f Elg;|%, U % _,1dP = [ gily P
G. ,NG ] J- G.
j=1""0,n i-1

E[ngGO |.#;_1ap
. ,n
j-1

) 1| . .}ap
J—

(3.3) E[gjl 9?3._1](13{60,“} + vﬁ’j)dP

G,

1l
[ S— — — — —_—

2
Elg.]| #._,101 +v< )dP
6. 37716y )

E[gjlﬁ‘}_l]dp + f v . dP.

n,j
G, ) NGy o G
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Now, suppose that the theorem is false. Then there is a sequence of sets

H, €j?n Uz and an ¢ > 0 such that for some sequence {g.} and j - n» =,
j,n”70 " 75-1 j

3.4 f {E[g.| R UF .1 - E[g.| F. ,]}dP >
(3.4) Bl VT - Elgl Fy T3P 2 e
J,n
@nd/or < -e, we use (3.4) only for simplicity). For each § > 0, there
i

i n . i . R
are sets G, , € 9?_1 and G 6570 with {Gj-l’ i=1,2...} disjoint and

3 O,n
g o _ i i _ .
P{Hj,nAHj,n < &, where Hj,n —LiJ[Gj_1 n GO,n]' Now, re-do the calculation
(3.3) with Gj-l and Go n superscripted by i, and the integrals summed

over i. For small enough & > 0, this yields a contradiction to (3.4), since

) Elvi J.|I i 0 as j-no>o Q.E.D.
i b

63,

Theorem 8. Assume (A3.1,5). Let {Ej} not depend on {Xj}; i.e., for

all j

p{dﬁjlﬁu_lsxu» uc<j}= P{dﬁjlﬁu_l, u < jl.

Suppose that there is a measure P(£,1,:) on Borel sets of S such that

P(-,1,B) 1is measurable for each Borel B < S. For each bounded, real valued

and continuous g(-), let

[8(€j)P(d€j|€j_1 = £) » [g(&')?(g,l,dg') = G(g) for all ¢,
(3.5)

ff(x’gj)P(dEJIEJ_l = E) > Jf(x,g')P(E,l,dE') = F(X,E) for each X ﬂ E, .

where F(-,*) and G(-) are continuous. Then (A3.2,3) hold.

f X,C. .
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4. Examples

4a. Application to a Routing Problem.

To illustrate the power of the method, we consider the automata routing
example described in [8, Section 3]. Calls arrive at a transmitting or switch-
ing terminal at random, at discrete time instants n = 0,1,2,..., with
P{one call arrives at nth instant} = u, u € (0,1), P{ > 1 call arrives at
nth instant} = 0. From the terminal, there are two possible routings to the
destination, route 1 and route 2; the ith route has Ni independent lines
and can thus handle up to Ni calls simultaneously. Let [n, n+l) denote
the nth interval of time. The duration of each call is a random variable
with a geometric distribution: P{call completed in the (n+l)st intervall
uncompleted at end of nth interval, route i wused} = Ai,ki € (0,1). The
members of the double sequence of the interarrival times and call durations
are mutually independent. In [8], the '"gain'" per step was a constant, =nd a
detailed study was made of the rate of convergence. Here, we do a stochastic
approximation version; 1i.e., a, *> 0. But the case where a =a> 0 is
handled in the same way. Let {yn} denote a sequence of random variables with
values in [0,1]. To get an unambiguous formulation, suppose that calls termi-
nating in the nth interval actually terminate at n + !, and arrivals and route
assignments are at the instants 0,1,2,... . Define £n = (Ei,éi) = route
occupancy process (called X; in [8]), where £i = number of lines of route i
occupied at time n'. If a call arrives at instant n + 1, the automaton "flips
a coin", choosing route 1 with probability Yn and route 2 with probability
a-yn). If all lines of the chosen route i are occupied at instant (n+1)-,
then the call is switched to route j(j#i). If all lines of route j are also
occupied at instant (n+1) , then the call is rejected, and disappears from the

system. The model can be generalized considerably, both in the number of lines

Rt o

i
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and switching nodes, and in the input and call length statistics. Let Ji

n
denote the indicator of the event {call arrives at n + 1, 1is assigned first to
route 1 and is accepted by route i}. The algorithm is (4.1), where

0 <a < B <1 are truncation points, and Yo € (o,B). The bar Is denotes truncation.

- - _ 8
(4.1) yn+l [yn + an(1 yn)Jln anynJZn”a'

Here, P{gn+l = E'lyn =Yy, En = £} is a continuous function of (y,£). The
Markov chain is {yn,En} not {Xn’gn—l}' For each fixed y € {a,B], {En(y).

n > 0} has a unique invariant measure Py(-), and E[Jinlyl’gl’l <n] =
Fi(yn’gn)’ where Fi("') is a continuous function of y for each (discrete)t.
Define yn(-) as xn(-) was defined. By Theorem 1 or 3 and the extension cited

after the Theorem statement we immediately get the correct ODE (which must be

satisfied by all the weak limits of {yn(-)})

(4.2) y = [(l-y)Elen - yEyJZn] for y € (a,8),

y(-) stops on first hitting o or 8.

Simple! No analysis of rates of convergence of n-step transition functions, etc.
is required. Also, no analysis of the x-dependence of the {En} or {En(x)} is

required. The model upon which the analysis is [8] was based appeared in [9].

4b. An adaptive quantizer. Efficient quantization of signals in telecommunica- .

tions systems is of considerable current interest (e.g., of voice signals in
telephone systems). Let the signal process z(-} be sampled at instants na,
n =20,1,..., and let the samples {z(nA)} be quantized and then transmitted.
Adaptive quantizers have been studied as a means to more efficient quantization
the quantization scale for 'large' signals, should be different from that for

'small' signals An adaptive quantizer studied in (10,11] takes roughly the




following form. We use a =

Y a constant. Let 0 = wo < w1< crr < wL-f<wL = ®,
0= By < Mg <o < n where the wi, n, are real numbers. For a scaling

parameter y > 0, define the quantization function q(:). For z(nd) > 0, set

q(z(na)) = yn, if z(na) € [ywi_l,ywi) and set q(-z) = -q(z). The parameter

y should vary with the signal power. To get the adaptive quantizer of concern,
fix real numbers 0 < Mi < M; <aan < Mi < o, where Mi <1, M: > 1, and set

B € (0,1]. Let O0<y, < Yy < =

Then we adapt the scale y according to
b4

u
€ - €48€ € _ ME € €
(4.3) oy = OUBL . where B =MD if [z(ma)] € [yfy, . vivy-
y
2

We do an asymptotic analysis of the sequence ye(-), defined as the piecewise

linear interpolation of the function with values yﬁ at time ne. Let

e—
Yo = Yo € [yyoy]-

l Now define 21 < By <eee< EL’ 21 < 0, zL >0, and a > 0 such that
1 gea < 1. Then set M; = (]+e£i), B =1 - ¢eax. Then using yl—ea

= y[l-ea log y] + 0(62),
and (1+ebr21) = BE

n
yu
€ € € € € 2
(4.4) Ynep = D (1+eb) - ea y log y + 0(e)]

Yy

€ € 2 yu

= [y, + eF(y,,2(na)) + 0(e")]
4
2

Assume further that 2Z(:) is a stationary (finite order) Gauss Markov

process with Cov Z(t) > 0 and let z(t) = h'Z(t), for some vector h # 0. In

this example, the noise does not depend on the state and so the analysis is quite

simple, even though z(:) is not a bounded process. Define EF(y,z(0)) = Ely).
Then F(y) has a unique zero y on (0,=), and F(y) is positive for y <y and
negative for y >y [8, Section 7}. In [8, Sections 7 to 9], there is a detailed

oS S P S AP
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investigation of the limit of [yi—?]//?. Here, we are only concerned with
the simpler question of the limit of ye(-). For some ¢ > 0,
EZ(OJF(y,z(nA+A+cA)) is continuous in Z(0),y and tends to F(y) in the mean,
uniformly in y € [yz,yu], as ¢ + o, This fact and the method of proof of

Theorem 1 or of Theorem 3 and the extension cited after the theorems implies

immediately that the weak limit of '{ye(-)} satisfies (4.5).
(4.5) y = F(y), y(0) =y, if y €[yp,y 1,

and if y € [yl,yu], y(-) stops on first hitting y, or y,.
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